The MHD (magnetohydrodynamic) generator or dynamo transforms thermal energy or kinetic energy directly into electricity. MHD generators are different from traditional electric generators in that they can operate at high temperatures without moving parts. MHD was eagerly developed because the exhaust of a plasma MHD generator is a flame, still able to heat the boilers of a steam power plant. So high-temperature MHD was developed as a topping cycle to increase the efficiency of electric generation, especially when burning coal or natural gas. It has also been applied to pump liquid metals and for quiet submarine engines.
The basic concept underlying the mechanical and fluid dynamos is the same. The fluid dynamo, however, uses the motion of fluid or plasma to generate the currents which generate the electrical energy. The mechanical dynamo, in contrast, uses the motion of mechanical devices to accomplish this. The functional difference between an MHD generator and an MHD dynamo is the path the charged particles follow.
MHD generators are now practical for fossil fuels, but have been overtaken by other, less expensive technologies, such as combined cycles in which a gas turbine's or molten carbonate fuel cell's exhaust heats steam for steam turbine. The unique value of MHD is that it permits an older single-cycle fossil-fuel power plant to be upgraded to high efficiency.
Natural MHD dynamos are an active area of research in plasma physics and are of great interest to the geophysics and astrophysics communities. From their perspective the earth is a global MHD dynamo and with the aid of the particles on the solar wind produces the aurora borealis. The differently charged electromagnetic layers produced by the dynamo effect on the earth's geomagnetic field enable the appearance of the aurora borealis. As power is extracted from the plasma of the solar wind, the particles slow and are drawn down along the field lines in a brilliant display over the poles.
没有评论:
发表评论